
New Developments in Lattice-Based Search Strategies in
SRI’s Hub4 System

Fuliang Weng Andreas Stolcke Ananth Sankar

Speech Technology and Research Laboratory
SRI International

Menlo Park, California

ABSTRACT
We describe new developments in SRI’s lattice-based progressive
search strategy. These developments include the implementation of
a new bigram lattice algorithm, lattice optimization techniques, and
expansion of bigram lattices to trigram lattices. The new bigram
lattice generation algorithm is based on generation of backtrace en-
tries using a word-dependent N-best list decoding pass, followed
by lattice generation from the backtrace entries. We present an al-
gorithm to reduce the size of the bigram lattices while maintaining
all valid paths. This algorithm is shown to reduce the size of the
lattice by about 50%, allowing easier processing in later stages such
as expansion to trigram lattices. We describe two algorithms to ex-
pand bigram lattices to trigram lattices. The first is a conventional
method, while the second is a novel approach that results in compact
trigram lattices that were found to be a factor of six smaller than
lattices created with the conventional approach. Decoding with the
new trigram lattices gave a 5% improvement in word error rate as
compared to our previous search strategy which used trigram LMs
to rescore N-best lists.

1. Introduction
Progressive search techniques have previously been proposed as a
method of applying complex knowledge sources in decoding for
automatic speech recognition (ASR) [3]. The basic idea is to use
simple knowledge sources, such as non-crossword acoustic models
and bigram LMs to generate a lattice of possiblehypotheses. The lat-
tices are then progressively decoded with more complex knowledge
sources such as crossword acoustic models or trigram LMs.

In search strategies we have previously used, such as in [6], non-
crossword acoustic models and bigram LMs were used to create
word bigram lattices. Adapted acoustic models were then used to
produce N-best lists from these lattices. Finally, more complex
knowledge sources such as crossword acoustic models and trigram
LMs were used to rescore N-best lists.

Trigram LMs are an extremely powerful knowledge source, and can
hence be more effective if used to decode lattices rather than N-
best lists as in our previous strategy. Our previous bigram lattice
algorithm generated a subset of the full bigram LM that contained
the most likely hypothesesfor the sentencebeing decoded. However,
since the subset could also contain the LM backoff node, almost any
word in the lattice could behypothesized at each word end, resulting
in a very large number of possible hypotheses, slow recognition, and
making expansion to trigram lattices difficult.

To correct this problem, we implemented a new bigram lattice al-
gorithm based on a word-dependent N-best decoding pass [8] that
creates backtrace entries which are then processed to create a lattice

of hypotheses. This results in true lattices that do not contain the
backoff node, and have a finite number of paths or hypotheses. We
implemented two algorithms to expand the bigram lattices to trigram
lattices. The first one is a conventional algorithm that creates a new
node for every trigram context present in the bigram lattice. The
second is a novel algorithm that exploits the fact that many trigram
probabilities are computed using the bigram backoff, and creates
compact trigram lattices that were found to be a factor of six smaller
than the conventionalalgorithm. Since the size of the bigram lattices
affects the size of the expanded trigram lattices, we also developed a
bigram lattice reduction algorithm, which was found to give lattices
which were a factor of two smaller.

Section 2 describes an algorithm that generates bigram lattices with
good quality to serve as a base for trigram expansion. Section 3
presents a lattice compaction algorithm that tries to reduce lattice
sizes while maintaining all the original hypotheses in the lattices.
Section 4 gives two algorithms that expand bigram lattices to trigram
lattices. Hub4-related experiments and results are given in these
sections to show the effectiveness of the new algorithms. Finally,
Section 6 summarizes our work.

2. New Bigram Lattice Generation
Algorithm

The primary goal of designing a new bigram lattice generation al-
gorithm is to generate simple bigram lattices with low lattice error
rates for easy trigram expansion.

Our previous bigram word lattice algorithm intended to extract a
subset of the full LM for an input utterance, so that the search
can be narrowed in later-stage processing [3]. Unfortunately, its
implementation was too simplistic in that the LM backoff node was
retained in the lattice, causing almost any word in the lattice to
be hypothesized at each word end, making recognition slow. It
also prevented compact expansion to trigram lattices, because the
connectivity of the backoff node to almost all the other nodes in a
lattice results in O(n2) trigram contexts, wheren is the number of
words in the lattice.

Our new bigram lattice generation algorithm is based on the word-
dependent N-best algorithm [8], and is similar to [4, 5]. The al-
gorithm assumes that the starting time for a word depends on the
preceding word but not on any word before that. Thus, a separate
word hypothesis is propagated for each possible predecessor word.
When the word ends, the score of each word ending hypothesis along
with the previous word is recorded in a backtrace array. The best
hypothesis is propagated along with the current word label.

To generate a lattice, we process the backtrace array to cluster to-

Lattices Rescor- Male Male Male Subset
ing LM F0 F1 FX Total

Old bigram trigram 14.1 35.1 60.1 33.5
New bigram trigram 13.9 34.5 59.1 32.9
Old bigram fourgram 13.5 34.5 59.2 32.8
New bigram fourgram 13.5 34.3 58.6 32.6

Table 1: Comparison of results of the previous and new bigram
lattice algorithms.

gether words that have the same name and ending time in the search.
Each such cluster corresponds to a node in the lattice. If the word
corresponding to clusterA starts the word corresponding to cluster
B in the search, then nodeA is connected to nodeB in the lattice.
In the lattice generated, neither time information nor acoustic infor-
mation is preserved. Either type of information is easy to recover.
However, removing it makes the lattices smaller, and thus easier to
expand to trigram lattices. Thus, in our approach, lattices act just as
constrained language models for the subsequent recognition pass.

To generate small lattices, it is necessary to control the pruning
beam-width during the search. A single pass search could be used.
However, we must then use a conservatively large beam-width as
only partial hypotheses scores will be compared at each frame. This
results in large lattices. In a forward-backward search, we can use
significantly lower pruning beam-widths in the backward search, as
the entire hypothesis score can be computed at every frame using the
scores from the forward search. Controlling the backward pruning
threshold allows the generation of lattices that are small enough for
processing, and that have low enough error rate.

We have experimented with various forward-backward pruning
thresholds to optimize the search for the Hub4 task. Before the eval-
uation, we conducted a set of experiments that used 1800/1200 for-
ward/backward pruning thresholds for the old lattices and 1800/700
forward/backward pruning thresholds for new bigram lattices. Prun-
ing thresholds specify the allowed difference between the partial
hypothesis score and the current best score, measured in “bytelogs,”
or 1

1024 log1:0001 of the hypothesis probability. We used a smaller
backward pruning threshold for the new algorithm because back-
ward pruning thresholds above 700 resulted in bigram lattices that
were too large for trigram expansion. Backward pruning thresholds
smaller than 700 were also generated but they produced much higher
lattice error rates, and we only used them as a backoff value for
isolated cases where the 700 threshold produced too large a lattice.
Table 1 gives the recognition results on F0, F1, and FX conditions for
the male speakers of the 1996 Hub4 development set, using previous
and new lattice generation algorithms to generate bigram lattices and
rescoring them with last year’s Hub4/SWBD/NABN 48K vocabulary
trigram and fourgram LMs described in [10]. The acoustic models
used for recognition are last year’s adapted models described in [6].

From the first two rows, we can see that the new algorithm gives about
a 1.8% relative improvement over the old algorithm when rescored
with a trigram LM. However, this improvement did not carry over to
a fourgram LM rescoring. The last two rows in the table show no
significant difference between the previous bigram lattices and the
new bigram lattices when rescored with a fourgram LM. However,
we observed an order of magnitude speedup by using the new bigram

Condition F0

0 5000 10000 15000 20000 25000
Average Lattice Size (No. of Transitions)

3.0

3.5

4.0

4.5

La
tti

ce
 E

rr
or

 R
at

e
(%

)

 1500/900

 1400/1200

 1800/700

 1400/1400

 1500/1200
 1500/1400

 1600/1200
 1600/1400

Condition F1

0 20000 40000 60000 80000 100000
Average Lattice Size (No. of Transitions)

6

8

10

12

La
tti

ce
 E

rr
or

 R
at

e
(%

)

 1500/700

 1600/700

 1800/700

 1400/900

 1500/900

 1600/900

 1400/1200

 1500/1200

 1400/1400

 1600/1200

 1500/1400

 1600/1400

Figure 1: Average lattice sizes (number of transitions) and lattice
error rates as a function of forward-backward beam width. Each
datapoint corresponds to a pair of forward/backward pruning thresh-
olds. The first graph shows result for condition F0, the second one
for condition F1 (note the scales differ).

lattices for recognition as compared to the previous bigram lattices.

After the evaluation, further work was done on finding optimal prun-
ing thresholds for generating bigram lattices. Figure 1 shows the
dependence of average lattice size and lattice error rate on the choice
of pruning parameters, for conditions F0 and F1 in the 1996 Hub4 de-
velopment data. Based on these experiments, we selected 1600/1200
as the forward/backward pruning thresholds to get another set of bi-
gram lattices using the new bigram lattice generation algorithm.
When a resulting bigram lattice was too big for trigram expansion,
we subsequently used 1500/1200 and 1500/900 as back-off values,
similar to what we did during the evaluation. As shown in Figure 1,
the new pruning thresholds reduced bigram lattice error rates over the
old setting at1800/700, by about 5% for F0, and by about 35% for
F1. The attendant increase in lattice size was partially compensated

by the lattice reduction algorithm decribed next.

3. Lattice Reduction
For very noisy speech, the bigram lattices generated in the forward-
backward recognition pass are quite large and therefore difficult to
expand. The usual way to obtain smaller bigram lattices for this type
of data is to tighten the backward pruning threshold. As a result,
the lattice word error rates increase. Here, we explore an alternative
way to make the resulting lattices smaller. The idea is to com-
bine identical (sub)paths in the lattices so that the redundant nodes
and transitions are removed. Similar research has been reported in
the computer science literature [1], where standard algorithms for
minimizing deterministic finite state automata are given. More re-
cently, algorithms for minimization of weighted transducers were
also developed [2, 9]. These approaches differ from ours in several
aspects. First, we are dealing with word lattices, a dual representa-
tion of finite state automata, where nodes are states and transitions
are labeled with words. Second, and more important, our lattices
are nondeterministic and there is no requirement that the resulting
lattices be deterministic. Third, we need a fast algorithm to process
our lattices. With these differences in mind, we designed a simple
reduction algorithm that greatly reduce redundancy in our lattices.

The key observation underlying our algorithm is that if two nodes in
the lattice have the same word label and the same set of successor
(or predecessor) nodes, they can be merged without changing the
language of the lattice, where the language of a lattice is defined as
the set of all the word strings starting at the initialnode and ending
at the final node. Depending on whether we are merging nodes
according to their predecessor node set or their successor node set,we
can have either forward or backward reduction algorithms. Multiple
iterations can also be performed. For simplicity, we only describe
the backward reduction algorithm; the forward one is symmetrical.

Backward Reduction Algorithm: LetSout(n) andSin(n) be the
set of successor nodes and the set of predecessor nodes of noden,
respectively. Letword(n) denote the word name of a latticenoden.

� For each lattice noden in reverse topological order (starting
with the final node):

– for each pair of predecessor nodes(i; j) of noden:

� if word(i) = word(j) andSout(i) = Sout(j),
then merge nodesi andj

Experiments were conducted with one iteration of the backward
reduction algorithm, on the F0 and F1 portions of the 1996 Hub4
developmentset. Using 1600/1200as the forward-backward pruning
thresholds, the algorithm reduced lattice sizes by about 50%, as
shown in Table 2. However, using an unadapted version of this
year’s acoustic model [7], we observed no statistically significant
difference in recognitionaccuracy between original and reduced
lattices (Table 3).

4. Algorithms for Expansion to Trigram
Lattices

One of the main purposes of this work is to use trigram LMs at an
early stage. The central component is the algorithm that expands
a bigram lattice to a trigram lattice, i.e., a lattice whose transitions
contain the trigram probabilities. Thus, more context information

F0 F1 Subset
Total

Before Reduction 12641 45033 30083
After Reduction 6777 23892 15993

Table 2: Bigram lattice sizes before and after reduction.

is encoded in the lattice and used in the subsequent re-recognition
pass. We note that for simplicity and concreteness, our discussion
here is focussed on trigram lattices, but that the algorithms described
generalize to N-gram models of higher order.

To place trigram probabilities on the lattice transitions we must cre-
ate a unique two-word context for each transition. For example, in
Figure 2, a node labeledc and its transitions(c;d) and(c; e) are
duplicated to guarantee the uniqueness of the trigram contexts for
placingp(djbc) andp(ejbc) on the transitions(c; d) and(c; e), re-
spectively. When a central node with labelc has two predecessor
nodes labeled with the same worda, only one additional node and its
corresponding outgoing transitions need to be duplicated, as shown
in Figure 3.

The conventional trigram expansion algorithm, presented below,
works by duplicating nodes and transitions in the manner indicated
throughout the lattice.

Conventional lattice expansion algorithm:

� For each noden of the lattice, in topological order:

– For each predecessor nodei of n:

� for each successor nodek of n:
� if a nodej with word(n) was already created

for trigram context(word(i); word(n)) and
word(k), connect nodei to nodej.

� otherwise, create nodej and label it with
word(n), connect nodei to nodej and nodej
to nodek, putp(word(k)jword(i)word(n))
on transition(j; k)

– remove noden and all its incoming and outgoing transi-
tions

While this algorithm correctly implements trigram probabilities in
the lattice, it does so at a considerable increase in lattice size. On our
Hub4 development set, the number of lattice transitions increased
about 10-fold using the conventional approach. We therefore devel-
oped an alternative expansion algorithm that takes advantage of the
backoff structure of the N-gram model. For most trigram language

F0 F1 Subset
Total

Before Reduction 18.81 37.25 29.06
After Reduction 18.79 37.25 29.05

Table 3: 1-best word error rates using bigram lattice before and after
reduction.

a

b
c

d

e

f

a

b
c

d

e

f

c

c

(a) Bigram lattice before expansion.

(b) Conventional trigram expansion.

Figure 2: Conventional expansion of a bigram lattice to a trigram
lattice when all incomingnodes have different labels.

models, the number of trigrams is much smaller than the number of
all possible trigrams. If we can share the bigram backoff weights
for trigram contexts, then we need to duplicate only enough nodes
to uniquely represent the explicit trigram probabilities in the lattice.

The idea underlying the algorithm is to factor backed-off trigram
probabilitiesp(wi+2jwiwi+1) into the backoff weightbo(wiwi+1)
and the bigram probabilityp(wi+2jwi+1), and to multiply the back-
off weight onto the weight of the(wi; wi+1) transition, while keeping
only the bigram estimate on the(wi+1; wi+2). Thus, no node dupli-
cation is required. Since backoff weights and probabilities combine
multiplicatively, the total score along a path fromwi throughwi+1 to
wi+2) will include the correct trigram probabilityp(wi+2jwiwi+1).

Figure 4 illustrates the compact expansion idea given that there is
only one explicit trigram probabilityp(djac). Notice that only one
node labeledc and its incoming transition from thenode labeleda
and outgoing transition to thenode labeledd are created.p(djac)
is placed on the transition from the newly creatednode to the node
labeledd. The weight on transition from thenode labeleda to the
newly created node was copied from the weight on the transition from
the node labeleda to the original node labeledc. After the explicit
trigrams are processed, the outgoing transitions from the original
node labeledc are weighted with their corresponding bigram prob-
abilities p(djc) andp(ejc). Furthermore, bigram backoff weights
bo(a; c), bo(b; c), andbo(f; c) are multiplied onto the corresponding
incoming transitions of the original node labeledc.

A potential problem for the compact algorithm is that even for ex-

a

b
c

d

e

c

a

a

b
c

d

e

a

(a) Bigram lattice before expansion.

(b) Conventional trigram expansion.

Figure 3: Conventional expansion of a bigram lattice to a trigram
lattice when some incomingnodes have a same label.

a

b
c

d

e

f

a

b
c

d

e

f

c

 where only (a c d) has an explicit trigram probability

(a) Bigram lattice before expansion given a trigram LM

(b) Trigram expansion using algorithm 2.

Figure 4: Compact expansion of a bigram lattice to a trigram lattice.

plicit trigram probabilities, the lattice retains a path using the backoff
transitions, which might have a higher weight than the correct trigram
transition and therefore be preferred during search. For example, in
Figure 4(b), there are two paths labeled(a; c;d), and during search
the incorrect lower path will be chosen ifp(djac) < p(djc)� bo(ac).
Our solution to this problem is to preprocess the trigram LM to elim-
inate all trigram probabilities that are lower than the corresponding
(improper) backoff estimate, and to renormalize the LM. Experi-
ments show that in practice, this only eliminates a small fraction of
trigrams. As shown below, there is no significant difference between
lattices containing improper transitions and those created from the
pruned LM.

Compact lattice expansion algorithm: Let weight(i; j) be the
aggregate probability on transition(i; j).

For each noden in the lattice in topological order:

� for each predecessor nodei of n:

– for each successor nodek of n:

� if there is an explicit trigram probability for
(word(i);word(n); word(k)),

� if a nodej with word(n) was already created
for trigram context(word(i);word(n)) and
word(k), connect nodei to nodej

� otherwise, create nodej, label it with
word(n), connect nodei to node j and
nodej to nodek, and setweight(j; k) =
p(word(k)jword(i)word(n))

� otherwise, mark transitions(i; n) and(n; k)

– if transition (i; n) is not marked, remove(i; n);
otherwise, set weight(i; n) = weight(i; n) �

bo(word(i); word(n))

� for each end successor nodek of n:

– if transition(n; k) is not marked, remove(n; k);

– otherwise, setweight(n; k) = p(word(k)jword(n))

� if no incoming transitions are marked, remove noden and all
its incoming and outgoing transitions.

5. Lattice Expansion Experiments
Experiments were conducted before and after the 1997 Hub4 evalua-
tion. Becauseof time constraints, we could only test the conventional
expansion algorithm before the evaluation. Trigram lattices were ob-
tained from bigram lattices using 1800/700 as the forward-backward
pruning thresholds and the backoff procedure described in Section 2.
Recognition on male F0, F1, and FX conditions of the 1996 Hub4
development data with last year’s adapted acoustic models [6] was
performed on these trigram lattices through conventional expansion.

Contrastive results are given in Table 4. The first row shows the
results when using the old lattice generation algorithm to generate
bigram lattices, generating N-best lists from these lattices,and rescor-
ing the N-best hypotheses with a trigram LM. The second row gives
results using the new lattice generation algorithm instead to generate
bigram lattices. The last row shows the results of 1-best recognition
on conventionally trigram lattices, expanded from bigram lattices
obtained with the new lattice generation algorithm. We see a 1.8%

Male Male Male Subset
F0 F1 FX Total

Old bigram lat. 14.1 35.1 60.1 33.5
N-best rescoring
New bigram lat. 13.9 34.5 59.1 32.9
N-best rescoring
New bigram lat. 13.5 33.1 57.9 31.9
Tri lat. expansion

Table 4: Improvement with new lattice algorithms.

improvement with the new lattice generation algorithm and better
than a 3% improvement with the expanded trigram lattices.

After the 1997 Hub4 evaluations, we conducted further experiments
with trigram lattice expansion using the reduced bigram lattices de-
scribed in Section 3. As we noted before, these lattices have smaller
lattice error rate than the bigram lattices we used for the evaluations.
We expanded the reduced bigram lattices using both the conven-
tional and compact trigram lattice expansion algorithms. It was
found that the compact expansion algorithm was ten times faster
than the conventional algorithm. Further, Table 5 shows that the size
of the trigram lattices from the compact expansion algorithm is only
a about a sixth of those from the conventional expansion algorithm.

Recognition experiments were carried out using the conventional
and compact trigram lattices using this year’s unadapted acoustic
models [7]. Table 6 shows that there is no difference in performance
between the conventional and compact trigram lattices. However,
as we noted before, the compact lattices can be generated ten times
faster than the conventional lattices, and are also six times smaller.
As shown in the last row of Table 6, there is no significant difference
for compact trigram expansion between using the original trigram
LM versus one pruned to eliminate trigrams that lead to improperly
weighted transitions.

Finally, we compared recognition performance using the conven-
tional trigram lattices generated using the bigram lattices used for
the 1997 evaluations, and the post-evaluation bigram lattices. Recall
the difference between these lattices is the forward-backward pruning
thresholds used, with the result that the post evaluation lattices had a
lower lattice error rate. Again we used this year’s unadapted acoustic
models [7]. Yet, as shown in Table 7, there was no significant change
in performance with these differently pruned lattices.

6. Summary
We have reported recent improvements of lattice-based search tech-
niques in our Hub4 system. Results show that a new bigram lattice

Expansion F0 F1 sub-total
Algorithm Total

Conventional 123107 488738 319985
Compact 29113 76396 54573

Table 5: Trigram lattice sizes in terms of average number of transi-
tions.

Expansion F0 F1 Subset
Algorithm Total

Conventional 14.77 32.02 24.36
Compact 14.68 32.32 24.49
Compact(pruned LM) 14.68 32.31 24.48

Table 6: 1-best recognition word error rates of trigram lattices ex-
panded with different algorithms.

generation algorithm, together with the expansion of trigram lattices,
results in about 5% improvement over our previous approach of tri-
gram rescoring N-best lists from the previous bigram lattices. Using
trigram lattices alone results in abouta 3% improvement over trigram
rescoring of N-best from bigram lattices. A significant speedup of
recognition with the new lattices was also observed, enabling us to
develop algorithms more efficiently.

In addition to these experiments, we have been working on various
pruning techniques to achieve smaller and higher-quality lattices.
We optimized the global pruning by controlling forward-backward
search beam-widths, and we developed a lattice reduction algorithm
to reduce lattice sizes about 50% while maintaining all the original
paths. Furthermore, we developed a new trigram lattice expansion
algorithm, which speeds up expansion by a factor of ten as compared
with the conventional algorithm, and also results in a factor of six
reduction in trigram lattice size.

Ackowledgment
This work was sponsored by DARPA through the Naval Command
and Control Ocean Surveillance Centerunder contract N66001-94-
C-6048.

References
1. J. E. Hopcroft and J. D. Ullman.Introduction to Automata The-

ory, Languages, and Computation. Addison-Wesley, Reading,
Mass., 1979.

2. M. Mohri and M. Riley. Weighted determinization and mini-
mization for large vocabulary speech recognition. In Proc. EU-
ROSPEECH, vol. 1, pp. 131–134, Rhodes, Greece, 1997.

3. H. Murveit, J. Butzberger, V. Digalakis, and M. Wein-
traub. Large-vocabulary dictation using SRI’s DECIPHER
speech recognition system: Progressive search techniques. In
Proc. ICASSP, vol. II, pp. 319–322, Minneapolis, 1993.

4. H. Ney and X. Aubert. A word graph algorithm for large
vocabulary, continuous speech recognition. In Proc. ICSLP,
pp. 1355–1358, Yokohama, 1994.

Bigram F0 F1 Subset
Lattice Total

1997 Evaluation 14.74 31.96 24.32
Post-evaluation 14.77 32.02 24.36

Table 7: 1-best recognition word error rates of trigram lattices ex-
panded from different bigram lattices.

5. J. Odell. The Use of Context in Large Vocabulary Speech
Recognition. Ph.D. thesis, Cambridge University Engineering
Department, Cambridge, U.K., 1995.

6. A. Sankar, L. Heck, and A. Stolcke. Acoustic modeling for the
SRI Hub4 partitioned evaluation continuous speech recognition
system. InProceedingsDARPASpeechRecognition Workshop,
pp. 127–132, Chantilly, VA, 1997.

7. A. Sankar, F. Weng, Z. Rivlin, A. Stolcke, and R. R. Gadde.
The development of SRI’s 1997 Broadcast News transcription
system. InProceedings DARPA Broadcast News Transcription
and Understanding Workshop, Lansdowne, VA, 1998.

8. R. Schwartz and S. Austin. A comparison of several approx-
imate algorithms for finding multiple (N -BEST) sentence hy-
potheses. InProc. ICASSP, vol. 1, pp. 701–704,Toronto, 1991.

9. N. Ström. Automatic Continuous Speech Recognition with
Rapid Speaker Adaptation for Human/Machine Interaction.
Ph.D. thesis, KTH, Stockholm, 1997.

10. F. Weng, A. Stolcke, and A. Sankar. Hub4 language modeling
using domain interpolation and data clustering. InProceedings
DARPA SpeechRecognition Workshop,pp. 147–151,Chantilly,
VA, 1997.

